Women who have changed, and are changing, the world |
The problem with trying to write about something like Women’s History Month is where do you start? Even if you narrow it down to women in science the list is vast.
I suppose you could always start with Maria Salomea Skłodowska who is better known as Marie Curie. She not only discovered radium and polonium, but she was also the first woman to win a Nobel Prize (in Physics). When she later won another Nobel (in Chemistry) she became the first person ever to win two Nobels and is still the only person ever to win in two different fields. Not a bad place to start.
Or how about Agnes Pockels (1862–1935). Even as a child Agnes was fascinated by science but, in Germany at the time, women were not allowed to attend university. So, she depended on her younger brother to send her his physics textbooks when he was finished with them. Agnes studied at home while taking care of her elderly parents. Doing the dishes Agnes noticed how oils and soaps could impact the surface tension of water. So, she invented a method of measuring that surface tension. She wrote a paper about her findings that was published in Nature, and went on to become a highly respected and honored pioneer in the field.
Fast forward to today we could certainly do worse than profile the two women who won the 2020 Nobel Prize in Chemistry for their work with the gene-editing tool CRISPR-Cas9; Jennifer Doudna at the University of California, Berkeley, and Emmanuelle Charpentier at the Max Planck Unit for the Science of Pathogens in Berlin. Their pioneering work showed how you could use CRISPR to make precise edits in genes, creating the possibility of using it to edit human genes to eliminate or cure diseases. In fact, some CIRM-funded research is already using this approach to try and cure sickle cell disease.
In awarding the Nobel to Charpentier and Doudna, Pernilla Wittung Stafshede, a biophysical chemist and member of the Nobel chemistry committee, said: “The ability to cut DNA where you want has revolutionized the life sciences. The ‘genetic scissors’ were discovered just eight years ago but have already benefited humankind greatly.”
Appropriately enough none of that work would have been possible without the pioneering work of another woman, Barbara McClintock. She dedicated her career to studying the genetics of corn and developed a technique that enabled her to identify individual chromosomes in different strains of corn.
At the time it was thought that genes were stable and were arranged in a linear fashion on chromosomes, like beads on a string. McClintock’s work showed that genes could be mobile, changing position and altering the work of other genes. It took a long time before the scientific world caught up with her and realized she was right. But in 1983 she was awarded the Nobel Prize in Medicine for her work.
Katherine Johnson is another brilliant mind whose recognition came later in life. But when it did, it made her a movie star. Kind of. Johnson was a mathematician, a “computer” in the parlance of the time. She did calculations by hand, enabling NASA to safely launch and recover astronauts in the early years of the space race.
Johnson and the other Black “computers” were segregated from their white colleagues until the last 1950’s, when signs dictating which restrooms and drinking fountains they could use were removed. She was so highly regarded that when John Glenn was preparing for the flight that would make him the first American to orbit the earth he asked for her to manually check the calculations a computer had made. He trusted her far more than any machine.
Johnson and her co-workers were overlooked until the 2016 movie “Hidden Figures” brought their story to life. She was also awarded the Presidential Medal of Freedom, America’s highest civilian honor, by President Obama.
There are so many extraordinary women scientists we could talk about who have made history. But we should also remind ourselves that we are surrounded by remarkable women right now, women who are making history in their own way, even if we don’t recognized it at the moment. Researchers that CIRM funds, Dr. Catriona Jamieson at UC San Diego, Dr. Jan Nolta at UC Davis, Dr. Jane Lebkowski with Regenerative Patch technologies and so many others. They’re all helping to change the world. We just don’t know it yet.
If you would like to learn about other women who have made extraordinary contributions to science you can read about them here and here and here.
Comment | See all comments |