Needles be Gone for Type One Diabetes Patients (…Hurrah!)

As a T1D for too long, this article concerning research for a cure of this slow killer, known as diabetes, is exciting – to me.  I hope you find it exciting as well. 

“Project Researcher: Yo Suzuki, Ph.D. – J. Craig Venter Institute

“Project Description

“Success will bring more NIH funding and could eliminate needles! Insulin delivery using infusion pumps can be effective for treatment of T1D, but it does not completely protect T1D patients from the long-term effects of the disease or enable a normal non-diabetic lifestyle. Diabetes research has focused on using insulin-producing cells isolated from cadavers or made from stem cells in T1D patients. While some of the research has yielded promising results, nothing yet has radically changed general approaches to treat patients.

“Our approach is to give bacterial cells that naturally live in our body the ability to function like our insulin-producing cells, to synthesize insulin when blood glucose levels are high to maintain proper glucose levels in T1D patients. In the proposed project, we will establish the feasibility and safety of this approach by making bacterial strains with this function and testing them in mouse systems. If successful, our research will form the basis for a bacterial treatment that can circumvent the struggle of injected insulin therapy and the issues regarding the rejection of transplanted human cells.

“Project Details

“An important ingredient of our study is a set of bacteria recently discovered to naturally reside deep within the human skin, in a layer previously thought to have only human cells. This layer of the skin contains blood vessels and is, therefore, suitable for implanted cells to monitor blood glucose levels and release insulin for systemic distribution. These bacteria do not cause problems in our body. Unlike transplants, they do not trigger host immune response. Unlike insulin pumps, they can enter this deep layer of the skin without puncturing the skin!

“Advances in biology now enable making changes to DNA, the genetic material, in these bacteria. Our team at the J. Craig Venter Institute is at the forefront of these advances to produce safe and beneficial bacteria. To make the deep-skin bacteria function like insulin cells, we will introduce a gene into them for making a version of insulin. Bacteria cannot make native insulin by themselves, but there is a type that can be made in bacteria and is as effective as native insulin. We will also introduce a DNA piece containing three genes for making a glucose sensor to control insulin production in the bacteria.

“It is critical that insulin-producing bacteria do not infect healthy individuals. Therefore, we will install a mechanism to prevent the bacterial cells from spreading beyond the designated host. We will then paint the mouse skin with our bacteria and see if blood glucose levels drop.

“This critical proof-of-concept experiment will tell us if this skin bacteria-based approach has promise and deserves continued support. If we are successful, we will have experimental data that will attract additional funding from the NIH. Establishing a system that can be tested in actual T1D patients will involve many rounds of experimentation and improvement. For example, our future bacterial cells will have more sophisticated safety features. However, tools needed for this approach are already available in basic form. Moreover, the eventual product may be superior to any other products under development. Therefore, we strongly feel that the work needs to be started now toward determining the viability of this approach. Your support could help revolutionize T1D therapy.

“ABOUT Me

“Hello, my name is Yo Suzuki. I am an Assistant Professor at the J. Craig Venter Institute. Our institute is known for its expertise in reading and writing genomes, blueprints for life. When writing genomes, our focus is to design and build beneficial microbes. I have been engineering microbes for 11 years, and finally, a connection is made between my skills and the opportunity to contribute to curing type I diabetes. The goal of this project is to create a bacterial strain that can respond to glucose and produce potent insulin analogs in a mouse. Our long-term goal will be to develop an engineered bacterial strain as a surrogate for beta cells in T1D patients. If we are successful, we will have a microbial treatment that circumvents the struggle of injected insulin therapy and problems with a transplant approach. Our project is the first and critical step toward this long-term goal. Our approach is innovative, but many tools to enable this approach are already available, including harmless bacteria that enter the skin in a non-invasive manner and live in a layer of skin appropriate for glucose sensing and insulin administration. Our tools to control these bacteria will only improve. Therefore, we have to start the work now to test the viability of this promising approach. Your support is greatly needed and appreciated.

“PROJECT UPDATES

“Update on 4-11-18  (6 Month Progress Report)

“Executive Summary

“The purpose of this project is to test to see if skin bacteria that respond to glucose levels and produce insulin can be engineered and introduced into laboratory animals to reduce their blood glucose levels, as a precursor to establishing engineered skin bacteria as painless substitutes for glucose sensors and insulin pumps. During the first six months, we made rapid progress and established genetic tools for engineering skin bacteria. This accomplishment sets the stage for the second phase of the project where expression modules for insulin genes and regulatory mechanisms for sensing glucose will be developed.

“Productivity: The work performed is summarized under the aims proposed for the project.

“Aim 1. Establish genetic engineering tools in selected deep skin bacteria.

“Completed: We collected six Gram-positive and three Gram-negative strains of bacteria isolated from skin samples. We determined the minimal inhibitory concentrations for nine antibiotics commonly used for genetic engineering. This test revealed that there are many strain-antibiotic combinations that can be used in our study. The Gram-positive strain Staphylococcus epidermidis ATCC12228 was the only strain tested among the nine strains for the capacity to re-enter the skin (unpublished result, R. Gallo). Therefore, we focused our resources on this strain. Gram-negative bacteria have been noted to be more proficient at proper folding of secreted proteins derived from other organisms, although there are examples where Gram-positive cells were used for making and secreting insulin. We decided to keep the Gram-negative strains as backup strains and continue to acquire genetic engineering tools for them. This marks the attainment of an initially proposed milestone (selection of strains).

“We previously developed a genetic engineering approach where synthetic DNA fragments loaded with an enzyme called transposase in vitro is introduced into bacteria. Transposase facilitates the integration of DNA fragments into the genome. Because this approach is effective in a wide variety of organisms, we tested it in the S. epidermidis strain with limited tools. To cost-effectively perform this procedure, we purified transposase and confirmed the activity of the purified enzyme. We then used the enzyme and succeeded in introducing a DNA fragment only containing a puromycin resistance gene into the S. epidermidis strain. The positive result was obtained when the DNA sample was pretreated with the lysate of the organism. The idea was that methylases in the lysate generated the methylation pattern on DNA found in the native organism so that the incoming DNA was accepted as its own DNA.

“Aim 2. Implement a biocontainment measure.

“In progress: Before we engineer the capability to express and secrete insulin in the S. epidermidis strain, a mechanism for biocontainment needs to be implemented, as an organism capable of expressing human insulin would be a hazard to laboratory workers, should they become infected. We are attempting to use CRISPR genome editing to knock out the thyA gene needed to make thymidine, an ingredient for DNA, to make our bacterial cells dependent on thymidine supplied from outside and keep the cells within designated culture tubes.

“Aim 3. Express SCIs in deep skin bacteria.

“In progress: Recent studies have resulted in single-chain insulin analogs (SCIs) that match native insulin in potency (Hua et al., 2008, J. Biol. Chem. 283:14703-14716). In beta cells, proinsulin is folded and cleaved to produce biologically active insulin, which consists of two peptides that are linked by disulfide bonds. Because native bacteria cannot cleave proinsulin, SCIs are essential for the strategy of cell-intrinsic and self-sufficient production of active insulin within bacteria. We are currently designing expression constructs incorporating the published SCI-57 design (Hua et al., 2008).

“Aim 4. Evaluate the capacity of bacterially produced SCIs to stimulate glucose uptake in adipocytes.

“Not started. We plan to test whether the bacterially produced SCIs are biologically active by treating mouse adipocytes with the bacteria in a glucose uptake assay. We expect this work to be started as soon as the SCI-producing strains are made. We have culture cell expertise needed to prepare the adipocytes.

“Aim 5. Evaluate the ability of SCIs to reduce blood glucose in mice after application of the engineered bacteria to the mouse skin.

“Not started. We plan to determine if the SCI-producing bacteria can colonize the skin of a mouse to result in a reduction of blood glucose levels in the mouse. We will prepare for this work when the SCI- producing bacteria are made.

“Aim 6. Implement a glucose-mediated regulation of SCI production.

“Not started. For effective blood glucose control, it is critical that SCI production be adjusted based on glucose concentration. We initially proposed to use a glucose sensor in Gram-negative bacteria, but we decided to focus on a Gram-positive strain. We will start researching mechanisms available in Gram-positive bacteria to enable a smooth transition to this phase of research.

“Synergistic Activity: The Diabetes Research Connection grant enables the critical first step toward a microbial treatment for diabetes that circumvents the struggle of injected insulin therapy. The preliminary data obtained in this project were incorporated into a grant pre-proposal submitted by J. Glass (JCVI) to the Larry L. Hillblom Foundation. We have identified a suitable NIH grant mechanism (PAR-18-434) to further develop our approach. We also attended the 2017 Chemical and Biological Defense Science and Technology Conference in Long Beach, California sponsored by Defense Threat Reduction Agency. Skin biology is an important aspect of their portfolio, and we received useful feedback on our research from experts.

Update on 2-06-18

“Last time I told you that I purified an enzyme called transposase to be used for facilitating a process called transformation, to put engineered DNA constructs into cells from outside. It turned out that the transformation step was still not easy for skin bacteria, but by communicating with scientists from Australia and multiple universities in the U. S. working on related bacteria of the Staphylococcus species, I got better at the process. I started getting colonies, or dots in a Petri dish each originating from a single transformed cell. Tests confirmed that these colonies had the DNA material I introduced into the cells. With this process being established, the next step for me will be to knock out a gene (thyA gene) needed to make an ingredient for DNA, to make our bacterial cells dependent on the ingredient (thymidine) supplied from outside, so that we can keep the cells at designated sites like a culture flask (as opposed to my skin). Also, the time is right for making a DNA construct for expressing insulin to be introduced into the skin bacteria. Designing DNA constructs is what I love the most. I am grateful that your support as it enables us to proceed to this phase of the project.

“Update on 11-22-17

“Toward my aim, one goal of establishing genetic engineering tools for skin bacteria, I wanted to test the approach of introducing synthetic DNA fragments loaded with transposase in vitro.  Transposase facilitates the integration of DNA fragments into the genome.  I believe that this is a widely applicable approach that is suitable for our project with multiple target organisms to engineer.  For optimizing this process, I would need quite a bit of transposase, but this is an expensive reagent if you buy it.  Just 10 µl of it costs $500, and you can use all 10 µl in one experiment.  Therefore, I decided to make my own preparation of transposase.  I received a DNA construct containing a transposase gene that can be expressed in E. coli from a research group in Sweden.  I introduced this construct into an E. coli strain suitable for recombinant protein production.  I induced transposon production, lysed the cells, and purified the protein from the lysate using an affinity chromatography column.  I confirmed the activity of the purified transposase using a standard assay in our laboratory.  I succeeded in this process and obtained an amount of transposase worth $93,000.  Encouraged by this result, I am now tackling establishing transformation protocols for skin bacteria.”

Thank you, Dr. Suzuki.  Readers, what do you think about this?  I’d like to hear from you.

Just sayin’…. #buckroth

What does having diabetes mean to me?

Pondering the above-titled question took me a few minutes to answer.  Ask yourself the same question and see how long it takes you to answer.

There are more cons than pros considering this is a life-threatening, incurable disease that needs daily and nightly attention.  The details to looking and feeling good are never-ending.

In short, to me, having diabetes (T1D) specifically means: paying attention to my every action and inaction; regulating my insulin due to these actions and inactions; pricking more than one finger ten times a day – more if I’m sick – for a blood sugar level check.  Being careful with what I eat and drink throughout any day or night; being careful when figuring every dose of insulin – often a guessing game – in order to digest what I eat, is habitual.  Sometimes embarrassing in public, but it’s definitely habitual.

Finding time in my career to get a required 30-minute walk or bicycle ride for circulatory and neurologic (nerve) flows is often difficult – and often dependent upon the weather – but it can be done.

Having this disease for 60 years has certainly taught me courage, persistence, perseverance, and a host of other things, good and bad.  I am a warrior!

I like life.  I am a happy person and find the positive in all situations.  Sometimes things were meant to be, no coincidence.  My spirit is healthy, my belief system is strong along with my faith.

What do you think?

Just wonderin’.  #buckroth

Book Reviews! Book Reviews!

A. K. Buckroth, Award WInning Author

Book Reviews are important, not just for the reading consumers, but for the authors as well.   As an award-winning author, the vast majority of my paperback and e-book sales happen on Amazon.com.  This is where you can find my books which are listed below.

As potential book buyers, the reviews are helpful to assist you, the reader, in making a buying decision.  In turn, reviews also help Amazon rank my books.  Rankings are important to authors.  They are important to me.  Being objective and positive in your writing of a review are simple keys.  Therefore, please write me a review.  Short and sweet is wonderful.

Among the numerous purchases of these beautiful books along with the hundreds – literally hundreds that have been given away – my requests for Amazon.com reviews will give me a lead to continue writing.  It’s all good.

Review Examples posted on Amazon.com:

Kisses for Cash…T1D meets T2D Book Three by A. K. Buckroth

Amazon Review by William: “Having read pieces of this, … [the author] developed the concept and turned it into literature, I found the book heartwarming and honest, as well as technically proficient.”

Me & My Money Too…a child’s story of diabetes Book Two by A. K. Buckroth

Amazon Review by Theresa: “What a wonderful story of friendship and diabetes. It’s good for children with diabetes and for childern to have a good understanding of what it’s like to know someone with the disease.”

Me & My Money…a child’s story with diabetes by A. K. Buckroth

Amazon Review by Ruth: “Fantastic, original book. Great help for children and parents alike. The author did a wonderful job. A must-have for anyone who has or knows a child with diabetes.”

My Diabetic Soul – An Autobiography by A. K. Buckroth Amazon Review by T.M.: “A welcome insight to living with diabetes.  Well done!A welcome insight to living with diabetes. Well done!  If more people would read books such as this fine work, perhaps there would be much fewer people sadly misinformed about the intricacies of living with diabetes….” 

…Just askin’…#buckroth

 

The Amazing Machine Inside of You

…Courtesy of Oak Point Chiropractic, Sacramento, California.

Can you imagine a machine that could heal your condition? Type in the right combination and cells react, repairing tissue and broken bones. A machine that regulates how many breaths you need for healing or one that beats your heart just enough to circulate the blood to areas in demand.

A machine this advanced could also send signals to its operator to slow it down or enter a sleep mode so updates could be downloaded.

It would be an amazing machine, cutting healthcare costs for millions. Undoubtedly, people would invest large sums just to have one and would go to great measures to take care of it. The demand for such a machine would be so great that suppliers could not keep up.

Want to know something more amazing? This machine exists within you. In fact, it is YOU. You were born with natural healing ability—you just have to take care of it!

Author A. K. Buckroth Upcoming Appearances

You’re invited!

Author Showcases approaching quickly!

As the Book Event Coordinator with the Northern California Publishers & Authors organization, multiple authors and their books will be featured, sold, and autographed for your pleasure.

Save the dates!

* Saturday, April 28, 2018, in the Rancho Cordova Library, 9845 Folsom Blvd., Rancho Cordova, CA, 95827, 12PM – 2:30PM.
* Saturday, May 12, 2018, in the Elk Grove Library, 8900 Elk Grove Blvd., Elk Grove, CA 95624, 1PM – 5PM.
* Saturday, June 16, 2018, in the Georgetown Library, 6680 Orleans, Georgetown, CA, 95634, 1PM – 5PM.

Genre inclusive. Family friendly. Free parking. See you there!

Certified Copyeditor and Proofreader @ Buckroth Enterprises

“Whaaat?!” you exclaim.

“Yes indeed,” I reply.  Extememly different from the numerous other articles blogged, inserted, and/or linked via this particular website (www.Mydiabeticsoul.com), a marketable endeavor has been growing.

Without further ado, further inquiries are solved at www.BuckrothEntreprise.com.

Just lettin’ you know…. #buckroth.

“…A Painless Patch That Can Control Diabetes Without Injections”

This is awesome.  From: FIONA MACDONALD, 15 MAR 2016

“Scientists have been struggling for decades to free diabetics from regular insulin injections. One of the main goals has been to figure out how to transplant healthy beta cells – the insulin-producing cells that fail as a result of diabetes – into patients, but this is an invasive procedure in itself that comes with the risk of rejection.
“Now researchers have come up with a simpler option – they’ve created a synthetic patch that’s covered in natural beta cells, which can be stuck painlessly to a patient’s skin to secrete insulin when it’s required and safely control blood sugar levels, no injection or monitoring required.

“The patch hasn’t been tested on humans as yet, but it’s already been shown to safely control the blood sugar levels of mice for at least 10 hours at a time, and the concept is an upgrade of the ‘smart insulin patch’ that was reported last year by the same team.

“The main difference is while the previous patch contained synthetic insulin, the new patch contains real, live beta cells, which means it’s able to more safely manage a patient’s blood sugar levels for longer, without the risk of over- or under-doing it.

“And because the beta cells are kept on a patch safely outside of the patient’s body, there’s no chance of them being rejected by the immune system.

“This study provides a potential solution for the tough problem of rejection, which has long plagued studies on pancreatic cell transplants for diabetes,” said lead researcher Zhen Gu from the University of North Carolina. “Plus it demonstrates that we can build a bridge between the physiological signals within the body and these therapeutic cells outside the body to keep glucose levels under control.”

“Beta cells are usually found in the pancreas, where they release insulin to help the body process excess sugar in the bloodstream following a meal. In people with diabetes, the cells are either damaged, or aren’t able to produce enough insulin to keep blood sugar levels under control, which is why regular insulin injections are required.

“The new patch works by linking microneedles up to live, cultured beta cells. If that doesn’t sound too fun, don’t worry, the needles are each roughly the size of an eyelash, which the scientists say means they don’t hurt when they’re applied.

“Those microneedles poke into capillaries and provide a link between the beta cells and a patient’s blood stream, and the team has developed something called ‘glucose-signal amplifiers’, which respond to rising blood sugar levels and communicate that message instantly back to the beta cells.

160314140741 1 900x600Zhen Gu/Advanced Materials

“The patch has now been tested on mice with type-1 diabetes, and the researchers have shown that it can quickly respond to skyrocketing blood sugar levels, and keep them controlled for 10 hours at a time, without any monitoring or regulation.

“Not only is this a whole lot quicker and easier than regular insulin injections, it’s also safer, because diabetics can often give themselves too little or too much insulin, which can lead to complications such as hypoglycaemia, blindness, comas, and even death.

“To make sure that there was no risk of this happening with the patch, the researchers added a second patch onto mice that had already had their blood sugar levels regulated. As they’d hoped, the new patch didn’t produce any extra insulin, but it did extend the life of the treatment to 20 hours.

“Before you get too excited, there’s still a long way to go before the device can hit the market. First, they patches need to be tweaked further to get the best performance in animal models, and will then need to enter pre-clinical tests, and eventually clinical trials in humans.

“But all the evidence so far suggests that they might just work as an easy and safe way for diabetics to control their condition. And that’s something we really need.

“Managing diabetes is tough for patients because they have to think about it 24 hours a day, seven days a week, for the rest of their lives,” said one of the researchers, John Buse. “These smart insulin approaches are exciting because they hold the promise of giving patients some time off with regards to their diabetes self-care. It would not be a cure but a desperately needed vacation.”

“The results have been published in Advanced Materials.

More Awesome Sauce from me, #buckroth!

Diabetes and Sleep Disorders

Last updated this extremely useful information on

“Research has found a strong connection between diabetes and sleep issues. Diabetics often suffer from sleep loss. And sleep loss can increase the likelihood of developing diabetes and exacerbate the symptoms for someone already dealing with the disease.

“Diabetes is a group of diseases in which the body is unable to properly produce and/or respond to insulin, resulting in too much sugar in the blood and urine. More than 30 million American adults have a form of diabetes and another 84.1 million are living with prediabetes – a condition that, without proper treatment, often leads to the development of Type 2 diabetes within five years.

“Read on to learn more about the relationship between sleep, developing diabetes, and improving sleep with the disease.

“Sleep Issues and Developing Diabetes

“Researchers have discovered many links between poor sleep and the development of onset, or Type 2, diabetes.

  • Across the board, studies have shown that people who are considered “short sleepers” (those who sleep less than 5 hours a night) have an increased risk of developing diabetes. And these short sleepers also tend to have a lower than average glucose tolerance, even if they haven’t been diagnosed with or previously shown other symptoms of diabetes.

“Other studies have linked a lack of sleep to insulin resistance – another common precursor to Type 2 diabetes. Insulin resistance is a condition in which the body’s cells do not respond normally to insulin.

  • A case study presented at a meeting of the American Diabetes Society found that healthy young people who regularly slept for less than 6.5 hours a night had a higher occurrence of insulin resistance. By contrast, people who got more than 7.5 hours of sleep had a lower occurrence of insulin resistance.

“A lack of sleep has also been connected to obesity – a condition which has been linked to the development and increased severity of diabetes.

  • Researchers have shown that a lack of sleep can impair glucose metabolism and affect appetite regulation, making it more difficult for your body to control hunger or recognize satiation. In addition, the exhaustion someone feels when sleep deprived makes it difficult to exercise and control weight gain. Getting more than 7 hours of sleep a night is a key factor in preventing obesity and therefore containing the risk of developing diabetes.

“Sleep Issues with Diabetes

“Diabetics often struggle with a variety of sleeping problems. People will diabetes have a slightly higher reported rate of insomnia. That’s to be expected, as diabetes symptoms can make it more difficult to sleep and a lack of sleep can worsen diabetes symptoms.

“Unregulated blood sugar and imbalanced hormone levels can make a good night’s sleep seem elusive. Having high blood sugar levels during the day often makes it difficult for the body to sleep effectively at night. And being tired makes it harder for the body to regulate blood sugar.

“Those dealing with diabetes are also faced with a number of issues that can affect their comfort, especially while trying to sleep.

  • Increased levels of blood sugar can cause neuropathic pain, which is an uncomfortable tingling or burning the fingers, toes, hands, and feet.
  • Restless Leg Syndrome (RSL) affects a higher percentage of people with diabetes, another contributing factor to disrupted sleep.
  • Apnea is another frequent cause of concern among diabetic sleepers. A wide variety of people struggle with sleep apnea – a serious disorder in which a person’s breathing is interrupted during sleep. Diabetics, especially those who are obese, are more prone to experience its symptoms.

“Managing Sleep Issues with Diabetes

“There is an undeniable link between poor sleep and diabetes, as one tends to both aggravate and intensify the other. But managing to improve one also tends to make it easier to manage the other.

“Eating correctly and properly maintaining blood sugar levels throughout the day makes it easier for the body to maintain the necessary levels throughout the night, often resulting in better sleep quality. Maintaining proper blood sugar levels can also reduce the symptoms of neuropathy and RLS.

“In turn, more and higher quality sleep has been shown to decrease glucose levels and make diabetes symptoms easier to manage.

“Additional Resources

“For more information about dealing with diabetes and managing the sleep problems associated with the disease, please visiting the following resources:

“On the Web

T:he American Diabetes Association: The ADA is devoted to diabetes education, advocacy, and research. The organization’s website provides practical information as well as active message boards for adults with type 2 diabetes.  Diabetes Self Management: This comprehensive site encompasses a wide-range of issues related to diabetes, from sleep management to nutrition and exercise.  Defeat Diabetes Foundation: This unique site, founded by a senior citizen, marathon runner who is also an insulin-dependent diabetic, emphasizes that people with diabetes are neither “helpless nor hopeless.” The site has a strong focus on self-care.  Academy of Nutrition and Dietetics: The nation’s largest organization of nutrition and food experts offers recipes, healthy eating tips and helpful advice for the general public, but the site also features many articles specifically related to diabetes and nutrition.

“On Twitter

CDCDiabetes: The Center for Disease Control (CDC) has a dedicated diabetes handle, where they share updates, statistics, recipes and other interesting information.  Diabetes Daily: You’ll get the latest in diabetes news, along with practical information for living daily life while managing your diabetes.  TuDiabetes: This community of people touched by diabetes shares personal stories and educational links, with a goal to connect, empower and mobilize those affected by diabetes.  Susan G. Weiner, RD: A nutritionist specializing in diabetes advocacy, Weiner shares tons of information about the dietary aspects of managing diabetes.

“Blogs:  Diabetes Stories: Riva Greenberg began blogging about her life as a diabetic as a way to share her own experience and knowledge in order to help others thrive. Her blog follows her journey and reflections as a diabetes advocate as well as research advancements and updates.  Diabetes Forecast: This is the companion blog site to Diabetes Forecast magazine. It focuses on healthy living, offering articles on food, exercise, and medications. There are also insightful interviews with public figures who are living with diabetes.  diaTribe: diaTribe aims to help people make sense of diabetes by offering a wealth of outstanding information on living with disease.

Scott’s Diabetes Blog: Scott K. Johnson has become a voice of the diabetes community, sharing both his experience living with diabetes as well as his experience as an advocate and connecting with others.”

Just keepin’ you up-to-date!  #buckroth

What is Up-and-Coming in Diabetes Technology?

Posted in Diabetes Research News

 A new year is underway, and with that comes the emergence of advances in diabetes technology. Companies like Tandem, Dexcom, Medtronic, Insulet, and Senseonics are continuing to move forward with projects that have been in the works for several years, as well as new ones. They are constantly striving to improve how diabetes is managed and to enhance the quality of life for those living with the disease.

Here are just a few of the technology changes in the works:

Closed loop systems. Many companies are still working to refine these processes. It is difficult to create an effective system that requires no user interaction, but they are getting closer. Currently, they are focused on reducing the amount of user input necessary and turning to sensor technology to measure and track blood glucose levels, automatically dose according to individual needs, and predict glucose levels. No fully closed loop systems are expected to be released in 2018, however.

Smartwatch and smartphone compatibility. Many people nowadays own smartphones and smartwatches. Companies are leveraging these connections to bring glucose monitoring right to people’s fingertips. With improved sensors and Bluetooth technology, data can be delivered directly to these devices through apps that allow for better tracking and monitoring of glucose levels. Users would also have the option of sharing this data with others, such as healthcare providers. There are a variety of apps in development with features to improve diabetes management.

Improved sensors. Speaking of sensors, they’re changing too. Industry leaders are looking to make sensors smaller yet more effective and accurate. They are also trying to extend the length of wear and reduce the number of daily calibrations needed. In turn, this would allow individuals more freedom and require less interaction with these systems while still managing blood sugar.

Increased FDA approval. There are some devices and technologies that are approved internationally but are not yet available in the United States. Or, approvals in the United States are stricter. International companies are looking to expand the availability of certain products in the U.S. and ensure that their diabetes care technology meets required standards.

Overall, there are numerous collaborations occurring between companies within the diabetes vertical that could have a positive impact on how the disease in managed moving forward. Companies are working together to bring about more advanced technology and monitoring systems that will make it easier for individuals to track not only their glucose levels, but also insulin use, meals, activity, and other factors that impact their diabetes care – and share it with their healthcare providers.

The Diabetes Research Connection is excited to learn more about these advancements in the months to come and see how diabetes care is changing for the future. The organization proudly supports novel research projects by early-career scientists and provides up to $50,000 in funding for studies. Learn more about current projects and how to support these initiatives by visiting http://diabetesresearchconnection.org.

DRC-Funded Scientist Creates New Insulin-Producing Cells to Fight Type 1 Diabetes

Posted in Diabetes Research News, DRC News

Thanks in part to funding from the Diabetes Research Connection (DRC), Dr. Kristin Mussar was able to conduct an in-depth study regarding how to stimulate the body’s own cells to create new insulin-producing cells that may help treat type 1 diabetes (T1D). In individuals with T1D, the immune system attacks insulin-producing cells, destroying them and leaving the body unable to effectively regulate blood sugar.

The human body is filled with myeloid cells that all differentiate to help grow, maintain, and repair various organs. When these cells are depleted, it impacts organ health. For instance, lack of insulin-producing cells results in diabetes. However, Dr. Mussar and her team discovered that there is a population of macrophages – white blood cells that recirculate throughout the body constantly monitoring the health status of all tissues – that instruct insulin-producing cells to grow in the perinatal stage of pancreas development. During this period of prolific growth, enough insulin-producing cells are created to support glucose homeostasis throughout one’s life.

Dr. Mussar found that there is a special population of these cells that act as cargos of potent growth factors for the insulin-producing cells in the pancreas. If these cells are prevented from entering the pancreas, the growth of insulin-producing cells is arrested and diabetes ensues. This lack of cell growth, as well as cell destruction, are issues that researchers have been trying to remedy through various strategies for treating T1D.

One avenue of treatment that is being explored is finding ways to use the body’s own cells and processes to support insulin production. Current challenges in treatment include the constant monitoring and accurate dosing of insulin, as well as the use of immunosuppressants or other medications to prevent the body from destroying modified cells or specialized therapies. Using the body’s own cells can help reduce risk of immune attack or rejection.

To this effect, Dr. Mussar’s research revealed that there are precursors to these special macrophages that exist within the bone marrow of adults. When these precursors are injected into the blood stream, they are able to signal growth of insulin-producing cells. This discovery raises hopes that, by dispatching these pro-regenerative cells from the bone marrow to injured pancreatic islets, it may be possible to enhance regeneration of insulin-producing cells in individuals with type 1 diabetes. This may in turn help to stabilize blood sugar naturally using the body’s own cells.

The Diabetes Research Connection is proud to have played a role in making Dr. Mussar’s research possible by providing funding that enabled her to continue moving forward with her project and eventually get the results published in the Journal of Clinical Investigation.